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Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy
below the truncation error with a work-cost equivalent to a few residual calculations –
so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of
equations that arise in time dependent magnetohydrodynamics (MHD) simulations with
textbook multigrid efficiency. We apply multigrid techniques such as geometric interpola-
tion, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully
implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these
methods to a standard resistive MHD benchmark problem, the GEM reconnection problem,
and add a strong magnetic guide field, which is a critical characteristic of magnetically con-
fined fusion plasmas. We show that our multigrid methods can achieve near textbook effi-
ciency on fully implicit resistive MHD simulations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Resistive magnetohydrodynamics (MHD) is a fluid model for plasmas in which a single velocity and pressure field is used
for both electrons and ions. Single-fluid resistive MHD is a system of nonlinear partial differential equations describing
conservation of mass, momentum, and energy for an ionized gas coupled with Faraday’s induction law, which describes
the evolution of the magnetic field and Ohm’s law. The resistive MHD model of a magnetized plasma does not include finite
Larmor radius effects, and is based on the simplifying limit in which the particle collision length is small compared with the
macroscopic length scales. For large magnetic Reynolds number or Lundquist number, the resistive MHD equations are dom-
inated by the hyperbolic terms, except inside thin current layers whose thickness scales as the inverse square root of the
Lundquist number. The hyperbolic portion of resistive MHD (aka ideal MHD) permits three speeds at which disturbances
travel; these are the fast and slow magnetosonic speeds and the Alfvén speed. In a number of problems of physical interest,
such as MHD investigations in a tokamak, there is a large temporal separation between the fast compressive motion and the
dynamics of motion. In such situations, explicit time-integration methods are unnecessarily restrictive due to numerical
stability constraints, whereas implicit methods are stable with large time steps. This paper develops fast, fully implicit
nonlinear multigrid methods for eight field compressible single-fluid resistive MHD equations in conservation form.

Implicit and semi-implicit methods have been used in the context of MHD for many years in codes such as NIMROD
(implicit) [23] and M3D (semi-implicit) [24], which were developed for tokamak MHD applications. Recent work in fully
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implicit MHD includes the application of Jacobian–Free–Newton–Krylov (JFNK) methods [7,21,20], which entails precondi-
tioning a Krylov linear solver at each Newton iteration. Preconditioners are often important for effective convergence in
JFNK, and linear multigrid can be used for this purpose [7]. Nonlinear multigrid – full approximation scheme (FAS) – is
an alternative to JFNK, has been used for hyperbolic operators for many years by Brandt, Jameson and many others
[5,19,11,16], and has the advantage being a globally convergent method. Furthermore, nonlinear multigrid obviates the need
for an outer (Newton) iteration and can thus solve the nonlinear system directly with a cost similar to that of a linear solve.
To the best of our knowledge nonlinear multigrid has never been applied to full eight field compressible resistive MHD,
although there are a number of instances where these have been applied to hydrodynamics. Mavriplis [19] has used nonlin-
ear multigrid successfully in the context of 2D unsteady flow. The work by Liao et al. [18] has achieved textbook efficiency on
3D unsteady compressible Navier–Stokes equations. They used a semi-Lagrangian approach for the advection part of the
equations, while the viscous and pressure terms were discretized on a staggered mesh. A key development in their work
is a distributed relaxation method to provide a stable smoother. Jameson and others use multi-stage Jacobi smoothers
[9,16], which have the advantage that they are easier to implement given an existing time-stepping code and have fewer
communications steps than Gauss–Seidel.

Minimizing the amount of work, or floating point operations (flop) per time step, is central to the design of fast solvers.
Work complexity is a simple measure of computational cost that does not include, for instance, cache effects and other com-
munication costs but is nonetheless very useful in understanding the potential performance of solvers. We define a ‘‘work
unit” as the work equivalent to the cost of a residual calculation – this is the fundamental unit of work in fast iterative solv-
ers. We count operations such as a Gauss–Seidel smoothing step, a first-order upwind operator, a second-order operator, and
residual calculations as one work unit. The costs of each of these operations is not precisely the same but is close enough for
our purposes. Moreover, we ignore the cost of interpolation and prolongation and simple vector operations. We consider this
to be a simple and good complexity model for understanding the performance of these and other scalable solver methods.
For an explicit multistage time-integration method the number of work units is the same as the number of stages. Common
explicit methods might be second-order accurate and require two work units per time step. An implicit method with costs
within a small factor of an explicit time step would be ideal for hyperbolic systems, and has been achieved with multigrid for
some classes of parabolic problems [25]. This is known as ‘‘textbook” multigrid efficiency.

Multigrid is a powerful method whose ideas have been independently developed as, for instance, nested iteration, error
smoothing by relaxation, and total reduction. Multigrid, or more generally multi-level, methods are the only theoretically opti-
mal solvers with serial work complexity of OðNÞ and OðlogðNÞÞ parallel complexity for a V-cycle as defined in Section 3 (an F-
cycle, as defined in Section 3, adds a log(N) term to each complexity), where N is the total number of grid points or cells.
These are theoretically optimal limits on the complexity of solving an elliptic system of equations. Multigrid methods have
been shown to be very efficient and practical for elliptic operators and a rich set of theories provides strong optimality
bounds for elliptic operators [4,10,14,25]. On the standard model problem, the Laplacian, multigrid with linear interpola-
tion/restriction, Gauss–Seidel smoothers, and F-cycles reduce the algebraic error to well below that of the discretization er-
ror in one iteration with about seven work units (see Section 3 for details). Achieving this textbook efficiency for operators of
interest in science and engineering is an active area of research. The challenge for hyperbolic dominated nonlinear PDEs is
the development of stable and efficient smoothers. To this end, we develop a nonlinear multigrid method for resistive MHD
using stable pointwise Gauss–Seidel smoothers and standard geometric nonlinear multigrid. An additional consideration in
algorithmic design and implementation is that recent machines have limited memory bandwidth relative to increasing pro-
cessor flop rates, and this trend is expected to continue with future generations of machines. Most of the machine cycles are
spent waiting for memory to be brought to the arithmetic units and most of the power budget is spent on moving data. Min-
imizing the use of memory is thus an important criterion in the design and implementation of equation solvers for future
machines. The geometric multigrid methods used here are ideally suited for these new architectures because they can nat-
urally be implemented without explicitly storing a matrix (i.e., matrix-free), and in fact these methods were developed in the
seventies for much the same reasons when memory availability was limited.

This paper proceeds with an introduction to MHD equations and discretizations in Section 2, followed by a description of
our multigrid method applied to MHD in Section 3, numerical results in Section 4, and conclusions and future work in Sec-
tion 5.
2. Magnetohydrodynamics: equations and discretization

2.1. Resistive MHD equations

The single-fluid resistive MHD equations couple the equations of hydrodynamics and resistive Maxwell’s equations, and
may be written in conservation form as
oU
ot
þ r � FðUÞ|fflfflfflfflffl{zfflfflfflfflffl}

hyperbolic terms

¼ r � FdðUÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
diffusive terms

; ð1Þ
where the solution vector U � U(x,t) is
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U ¼ q;qu;B; ef gT ;
and the hyperbolic flux vector F(U) and the diffusive fluxes Fd(U) are given by
FðUÞ ¼ qu;quuþ pþ 1
2

B � B
� �

I� BB;uB� Bu; eþ pþ 1
2

B � B
� �

u� BðB � uÞ
� �T

;

FdðUÞ ¼ 0;Re�1��s; S�1ðgrB� gðrBÞTÞ;Re�1��s � uþ c
c� 1

j
RePr

rT þ g
S

1
2
rðB � BÞ � BðrBÞT

� �� �T

:

ð2Þ
In the above equations q is the density, u is the velocity, B is the magnetic field, p and T are the pressure and temperature,
respectively, and e is the total energy per unit volume of the plasma. The plasma properties are the resistivity g, the thermal
conductivity j, and the viscosity l, which have been normalized, respectively, by a reference resistivity gR, a reference con-
ductivity jR, and a reference viscosity lR. The ratio of specific heats is denoted by c and taken to be 5/3 throughout this work.
The non-dimensional parameters in the above equations are the Reynolds number, defined as Re � q0U0L/lR, the Lundquist
number, defined as S � l0U0L/gR, and the Prandtl number, denoted by Pr, which is the ratio of momentum to thermal diffu-
sivity. The non-dimensionalization is carried out using a characteristic tokamak length scale, L, and the Alfvén speed
U0 ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffil0q0
p

, where B0, q0, and l0 are the characteristic strength of the magnetic field, a reference density, and the per-
meability of free space, respectively. The equations are closed by the following equation of state:
e ¼ p
c� 1

þ q
2

u � uþ 1
2

B � B;
and the stress tensor is related to the strain as
��s ¼ l ruþ ruð ÞT
� 	

� 2
3
lr � uI:
Finally, a consequence of Faraday’s law is that an initially divergence-free magnetic field must lead to a divergence-free
magnetic field for all times, which corresponds to the lack of observations of magnetic monopoles in nature. This solenoidal
property is expressed as r � B = 0.

2.2. Discretization

We limit the discussion to a two-dimensional Cartesian domain. The extension to three dimensions is straight-forward.
We use a finite volume approach in which the domain [xl,xr] � [yl,yr] is divided into finite volumes of size Dx � Dy (Dx and
Dy are the mesh spacing in the x- and y-directions, respectively), indexed by (i,j) and bound by faces at iþ 1

2 ; j

 �

and i� 1
2 ; j


 �
in the x-direction, and i; jþ 1

2


 �
and i; jþ 1

2


 �
in the y-direction. Solving Eq. ( 1) using a backward Euler method:
A Unþ1
ij

� 	
� Unþ1

ij þ Dt r � F Unþ1
� 	

�r � Fd Unþ1
� 	h i

ij
¼ Un

ij: ð3Þ
We discretize the divergence of the fluxes in Eq. (1) as
of
ox

� �
i;j
¼

~f iþ1
2;j
� ~f i�1

2;j

Dx
; ð4Þ
where f may represent either the hyperbolic or the diffusive fluxes. The quantity ~f iþ1
2;j

is referred to as the numerical flux
through the face iþ 1

2 ; j
� 


, and is computed as a linear combination of the fluxes at cell centers as
~f iþ1
2;j
¼
Xn

m¼�m

amfiþm;j: ð5Þ
Our numerical framework provides the flexibility of using any of a group of different spatial discretization schemes. For a
second-order central difference implementation, m = 0, n = 1, and a0 ¼ a1 ¼ 1

2; for a fourth-order central difference approx-
imation, m = 1, n = 2, and a�1 ¼ a2 ¼ � 1

12 ; a0 ¼ a1 ¼ 7
12. These central difference approximations are free of dissipation errors,

except perhaps near domain boundaries. However, for physical phenomena which are not adequately resolved, the numer-
ical solution will exhibit ringing due to the dispersion error in these central difference schemes. In the next section, we pres-
ent a nonlinear multigrid method to solve the discrete system (Eq. 3), the left-hand side of which is denoted as AðUnþ1

ij Þ, and
which uses the central difference discretizations to evaluate the divergence of the fluxes. We utilize an additional discreti-
zation of Eq. (3) where the hyperbolic fluxes are computed using a first-order upwind method. This operator is denoted aseAðUnþ1

ij Þ. The first-order upwind fluxes are computed using a Lax–Friedrichs method as follows:
Fiþ1
2;j
¼ 1

2
F Uij

 �

þ F Uiþ1;j

 �� �

� 1
2

kmaxj j Uiþ1;j � Uij

 �

; ð6Þ
where kmax is the maximum eigenvalue of the Jacobian matrix oF/oU, associated with the fast compressive wave in MHD.
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3. Multigrid methods

Multigrid methods are motivated by the observation that a low resolution discretization of an operator can capture
modes or components of the error that are expensive to compute directly on a highly resolved discretization. More generally,
any poorly locally-determined solution component has the potential to be resolved with coarser representation. This process
can be applied recursively with a series of coarse grids, thereby requiring that each grid resolve only the components of the
error that it can solve efficiently. These coarse grids have fewer grid points, typically about a factor of two in each dimension,
such that the total amount of work in multigrid iterations can be expressed as a geometric sum that converges to a small
factor of the work on the finest mesh. These concepts can be applied to problems with particles/atoms or pixels as well
as the traditional grid or cell variables considered here. Multigrid provides a basic framework within which particular mul-
tigrid methods can be developed for particular problems.

We use geometric multigrid because it has the potential to be very efficient and the geometric domains of interest in this
work (i.e., tokamaks) are simple enough that explicit coarse grids can be practically constricted even if, for instance, unstruc-
tured grids are used. Geometric multigrid not only provides a powerful basis on which to build a specific solution algorithm,
but also allows for the straightforward use of nonlinear multigrid, or full approximation scheme (FAS) multigrid [4] and ma-
trix-free implementations. Given that our problems are nonlinear, FAS multigrid is very efficient in that it solves the nonlin-
ear set of equation directly and obviates the need of an outer (Newton) iteration. This is a critical component in attaining
textbook efficiency on nonlinear problems. Fig. 1 shows the standard multigrid FAS V-cycle and uses the smoother
u S(A,u,b), the restriction operator Rkþ1

k , which maps residuals and current solutions from the fine grid space k to the coarse
grid space k + 1 (the rows of Rkþ1

k are the discrete representation, on the fine grid, of the coarse grid functions), and the pro-
longation operator Pk

kþ1, which maps the current solution from the coarse grid to the fine grid.
Common notation for this multigrid V-cycle is V (l1,l2), where l1 and l2 are the number of pre- and post-smoothing

steps, respectively. The canonical model problem is the Laplacian, for which point-wise Gauss–Seidel smoothers combined
with linear interpolation for the restriction and prolongation operators generate methods that reduce error by about an order
of magnitude per V (1,1) cycle. This is theoretically optimal in that this rate of residual reduction is independent of mesh size
and the amount of work in a V-cycle is given by a geometric sum that converges to about five work units. This so-called text-
book efficiency has been observed, if not proven, for multigrid methods in a wide variety of applications (see Trottenberg
et al. and references therein for details [25]).

A concept used to determine if a point-wise smoothing method exists is h-ellipticity. Brandt et al. in [6] first introduced h-
ellipticity and it is described in Trottenberg et al. [25]. H-ellipticity is the minimum Fourier symbol of the high half (in at least
one dimension) of the spectrum of a discrete operator divided by the maximum Fourier symbol of the operator. An h-ellip-
ticity bounded well above zero is a necessary and sufficient condition for the existence of a point-wise smoother for an oper-
ator with a symmetric stencil [25]. An important result of h-ellipticity is that effective point-wise smoothers (e.g., Gauss–
Seidel and distributive Gauss–Seidel) can be constructed for upwind discretizations of hyperbolic systems with no restriction
on the time step, whereas point-wise Gauss–Seidel is unstable for a central difference scheme for a large time step. We have
observed textbook multigrid efficiency with standard multigrid methods (e.g., point-wise Gauss–Seidel smoothers) using a
first-order upwinding method for ideal and resistive MHD. First-order accuracy is, however, generally not sufficient for many
applications, and second-order schemes are required for efficiency. These stable low-order smoothers have been used exten-
sively with a higher-order operator via a defect correction scheme, which is identical to preconditioning when an exact sol-
ver is used, but is more amenable to a nonlinear solve [1,3,8,15,17].

An additional requirement of an optimal solver is to be able to reduce the algebraic error to the order of the discretization
(or truncation) error for steady-state problems. For transient problems the solver needs to reduce the algebraic error to be-
low the incremental error – that is, the product of the truncation error of the time-integration scheme and the spacial trun-
cation error. Reducing algebraic error far below that of the incremental error is computationally wasteful, though potentially
useful for debugging. There is generally no need to spend resources to reduce the algebraic error far below the incremental
Fig. 1. Nonlinear FAS multigrid V-cycle algorithm.



Fig. 2. Nonlinear FAS multigrid F-cycle algorithm with defect correction.
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error. This observation leads to our definition of an optimal solver as one that can reduce the error to less than the incremen-
tal error with a few work units per time step. This is an ambitious goal in that it requires both scalability and small constants
in the actual computational costs. In fact, this results in a solver in which the rate of reduction in the residual actually in-
creases as the mesh is refined, because the truncation error decreases. This goal can be achieved by using a multigrid V-cycle
within what is called an F-cycle iteration [25]. Fig. 2 shows the standard nonlinear multigrid F-cycle with defect correction to
accommodate the nonlinear V-cycle with a lower-order operator (eA is the first-order upwinding operator) for which our
point-wise Gauss–Seidel smoother is stable.

The complexity of an F-cycle is asymptotically similar to a V-cycle, and it can be proven to result in a solution with alge-
braic error that is less than the incremental error on the model problem [25]. Multigrid can thus achieve discretization error
with a work complexity of a few residual calculations by using multigrid. An additional advantage of the FAS multigrid algo-
rithm is that it is an effective global nonlinear solver in that it does not suffer from the problem of limited radius of conver-
gence of a standard Newton method.
4. Numerical results

4.1. Test problem setup and solver definition

We evaluate the effectiveness of our methods with a resistive MHD benchmark problem in magnetic reconnection – the
geospace environmental modeling (GEM) magnetic reconnection problem [2]. The GEM problem is a Harris sheet equilib-
rium with a magnetic field perturbation which, in the presence of resistivity, allows for the parallel magnetic field lines
to break and reconnect.

Fig. 3 shows a time sequence of current density Jz field during reconnection.
Two Reynolds numbers are considered in Eq. (2): (1) Re = 2000 low viscosity, and (2) Re = 20 high viscosity. The Lundquist

number was fixed at S = 200 and the thermal conduction term was chosen to be Re Pr = 125. The boundary conditions are
periodic in x and perfectly conducting walls in y. Two magnetic field configurations are also considered: (1) zero Bz field
and (2) Bz = 5 field. We consider large magnetic guide fields because this is an important parameter of magnetically confined
fusion plasmas. A guide field make these problems much stiffer; for instance, in the limit of an infinite guide field, the veloc-
ity field becomes incompressible. The two Reynolds numbers and two guide field cases generate four test scenarios that we
investigate.

Our goal is to develop solvers with a complexity equivalent to a few residual calculations (work units) per time step, with
the largest time step that can accurately resolve the dynamics of the problem. In this study, the solver is fixed at one iteration
of FAS F-cycle with two defect corrected V (1,1) cycles at each level, as described in Section 3, and with a work complexity of
about 18 work units per time step. There are three applications of the fine grid operator in residual calculations and defect
correction in FAS multigrid, and three fine grid work units in the smoothers and residual calculations in each of the two V
(1,1) cycle, plus lower-order work in restriction/prolongation and FAS terms. This results in about ten work units on the fine
Fig. 3. Time sequence of current density, Jz during reconnection at time (a) t = 0, (b) t = 15 and (c) t = 60, for the low viscosity zero-guide field case.
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grid. Each successive grid is four times smaller (in 2D), and F-cycles process the second grid twice, the third grid three times,
and so on, resulting in the equivalent of about eight additional work units for a total of 18 work units (there are actually
fewer total work units in 3D because the coarse grids are relatively smaller). The smoother is nonlinear Gauss–Seidel with
one iteration per grid point and red–black (or checkerboard) ordering. In Section 4.2 we demonstrate, with comparisons
against several MHD codes, that we are solving the equations correctly. In Section 4.3 we present convergence studies in
space and time that demonstrate that we are, in fact, able to attain second-order spatial accuracy of our numerical method
with this nonlinear multigrid MHD solver. The code is fully MPI parallel and we observe good parallel efficiency on typical
current high-end parallel machines (Section 4.5). For the test cases presented here, the time integrator is backward Euler,
which is first-order accurate. The code has the option of second-order Crank–Nicholson time stepping, but we observed
problems with stability on the stiffer test cases. There are two paths to higher-order in time solutions: (1) develop high-
er-order stable time integrators or (2) use a higher-order time integrator in the defect correction process. The latter of these
options is simple, and we plan to investigate this in future work. We use a time step Dt = 0.1 for all of the test cases, even
though the guide field cases are much stiffer. This is about twice as expensive as the ‘‘textbook” efficiency that was our goal,
and we are able to use an optimal one V (1,1) cycle for the high viscosity, zero-guide field case (as well as Crank–Nicholson),
but this solver was not adequate on the other test problems with our time step, and so for simplicity of presentation we use
the same solver parameters for all test cases.
4.2. Verification

To verify that we are solving the equations accurately we compare the evolution of the total kinetic energy with four
other resistive MHD codes: (1) an explicit finite volume code (labeled ‘‘finite volume” [22]), (2) a C1 finite element code (la-
beled ‘‘M3D-C1” [12]), (3) a spectral element code (labeled ‘‘SEL” [13]), and (4) a higher-order finite element code (labeled
‘‘NIMROD” [23]). The comparison, using the high viscosity case with zero magnetic guide field, is shown in Fig. 4 (left).

Our code agrees with these other codes with a peak kinetic energy of about 0.22 at about T = 9.0 and minimum at T = 30.0.
Similarly, Fig. 5 (left) shows the low viscosity case. Again, good agreement is observed with all codes with a peak kinetic

energy of about 0.46 at about T = 14.0 and 0.12 at T = 40.0. Due to the damping nature of backward Euler time integration, the
low amplitude oscillations in the kinetic energy history, observed in the other codes, are damped. As expected, the low vis-
cosity case requires a finer grid than the high viscosity case.

Finally, a high viscosity case with a magnetic guide field of Bz = 5.0 is compared with a C1 finite element [12] code in Fig. 6
(left). Again, good agreement is observed, although the finite element results are not highly converged.
4.3. Convergence tests

The ultimate goal of solver design is to be able to take as large a time step as possible while capturing the dynamics of the
system accurately and achieving second-order spatial accuracy. To verify that our solver is indeed reducing the algebraic er-
ror below truncation error, as F-cycle multigrid theory would indicate, we rely on empirical evidence of second-order spatial
convergence. Observing second-order spatial accuracy is sufficient to verify that the solver is truly optimal in that the alge-
braic error is reduced to the order of the discretization error with an asymptotically constant amount of work per grid point
(i.e., 18 work units).
Fig. 4. Kinetic energy for high viscosity case with zero magnetic guide field with four other codes (left) and a spatial convergence study (right).



Fig. 5. Kinetic energy for low viscosity case with zero magnetic guide field with four other codes (left) and a spatial convergence study (right).

Fig. 6. Kinetic energy for high viscosity case with magnetic guide field with a finite element code (left) and a spatial convergence study (right).
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Fig. 7 (left) shows the error as a function of spatial discretization (N, the number of cells in the long dimension) for several
quantities of interest: (1) peak kinetic energy, (2) kinetic energy at T = 40.0, (3) reconnection flux rate at T = 40.0, and (4)
reconnection rate at T = 40.0, for the low viscosity case with zero guide (Bz) field. Numerically, we do not preserve the sole-
noidal property of the magnetic field r � B = 0 exactly, even though the discretized system does. Errors in preserving the
divergence property arise solely from the algebraic error. Numerical evidence in Fig. 7 (right) shows that these errors de-
crease with mesh refinement. This demonstrates second-order convergence on problems with up to a quarter of a billion
equations (8192 � 4096 � 8). Observing second-order accuracy in space proves that our multigrid solver is reducing the
algebraic error to the level of the discretization error, in that otherwise the algebraic error would start to dominate the solu-
tion and the error would level off or even increase as the problem size increased. Fig. 8 shows similar convergence studies for
two other viscosity cases: (1) the high viscosity case with zero guide (Bz) field and (2) the low viscosity case with Bz = 5. These
studies go up to grids with 4 billion and 1 billion equations, respectively, and Richardson extrapolation was used to construct
approximations to the exact solutions, which were subsequently used to compute these errors. In the low viscosity, large
guide field case we measure convergence at T = 28.0, which is about the time of the minimum kinetic energy.

Fig. 9 (right) shows the residual history, using the infinity norm, of ten F-cycle iterations on the high viscosity case. With
the goal of solving the system with algebraic error on the order of the incremental truncation error, we would expect to see
the rate of reduction of the algebraic error to increase by a factor of four in each successive halving of the mesh size, given
that we use a second-order method. To the degree that the residual norm can be used as a proxy for the norm of the error this
data does show a reduction rate of approximately three to four in the early iterations, as one would expect.

Fig. 4 (right), Fig. 5 (right), Fig. 6 (right), and Fig. 9 (left) show spatial convergence studies for the four cases in this study.
From this data we conclude that a 512 � 256 grid is adequate for testing the ability of our solver to take large time steps.



Fig. 7. Verification of second-order spatial accuracy. Error in peak kinetic energy and, kinetic energy, reconnection flux rate and reconnection rate at
T = 40.0 (left), convergence of r � B = 0 (right).

Fig. 8. Order of spatial accuracy. Error in peak kinetic energy and kinetic energy, reconnection flux rate and reconnection rate, high viscosity cases, Bz = 0
(left) and low viscosity Bz = 5 (right).
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Fig. 10 shows time-step convergence studies using a 512 � 256 grid and Bz = 0.0. Note that reducing the time step not
only decreases the truncation error, but also renders nonlinear systems that are more diagonally dominant, which results
in increased accuracy from the iterative solver because the solver executes a fixed number of iterations instead of iterating
until a desired reduction in the residual is achieved. Conversely, as the time step increases, the effectiveness of the solver
decreases, leading to less-accurate solutions. The CFL limited time step for these problems is about Dt = 0.009 for the
zero-guide field case and about D t = 0.002 for the guide field case on the 512 � 256 grid. Fig. 10 (left) shows good accuracy
at about Dt = 0.25, or about 25 times the CFL condition for the high viscosity case. This is about what is required to resolve
the dynamics of the system, and the code is stable on times far larger than is useful for these dynamics. A common explicit
method – second-order Runga–Kutta – has a work complexity of two per time step, and so we are nominally seeing a po-
tential of about a 2.5x speed-up on this problem, give that our solver has a complexity of 18 work units or about 10x the
explicit time-step cost. Fig. 11 shows time-step convergence studies using a 512 � 256 grid and Bz = 5. The high viscosity
Bz = 5 case in Fig. 11 (left) shows very good time convergence at Dt = 0.05 with significant loss of accuracy at D t = 0.25.
The low viscosity case, Fig. 11 (right), similarly shows very good time convergence at Dt = 0.05 with significant loss of accu-
racy at Dt = 0.25. The chosen time step is about 50 times the CFL condition at Dt = 0.1 with a 512 � 256 grid. These results
show that with zero-guide field and high viscosity we are able to take time steps well beyond what is needed to resolve the
dynamics of the system accurately, which is about Dt = 0.25, but with low viscosity and/or a guide field we are limited to
time steps of about Dt = 0.1.



Fig. 10. Convergence in time for kinetic energy for zero-guide field: high viscosity (left) and low viscosity (right).
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Fig. 9. Spatial convergence for kinetic energy for low viscosity case with magnetic guide field (left). Residual history of the first non-linear solve of the high
viscosity, zero-guide field case.
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4.4. Additional numerical studies

This section considers the case of very low viscosity and resistivity with Re = 10,000 and S = 10,000, and a zero-guide field.
Again, one F-cycle with two V (1,1) cycles at each level is used in each time step and Dt = 0.1. Fig. 12 (left) shows the kinetic
energy as a function of time. Again we can see typical second-order convergence of the kinetic energy at T = 20.0. The norm of
the error is an ideal measure of convergence though it is more difficult to compute. Fig. 12 (right) shows the infinity norm of
the increment in the solution between successive grid refinements of the six active variables in this problem; i.e., a solution
on a 256 � 128 grid is reduced to a 128 � 64 grid and the difference of this solution and the 128 � 64 grid solution is plotted,
and so on. Given that we use a second-order method we expect the norm of these increments to fall quadratically with finer
grids. The L1 and L2 norms also showed quadratic convergence, but are not presented here. These data confirm that we are
indeed converging the solution asymptotically with second-order accuracy.

An alternative form of control of the solver is to monitor the residual and declare convergence at some tolerance value for
the relative reduction in the residual (RTOL) at each time step. Fig. 13 shows a solver accuracy convergence study of the ki-
netic energy with several tolerance values (RTOL = 10�1, 10�2, and 10�4), using V-cycles and F-cycles, as well as the single F-
cycle with 2 V (1,1) cycles solver, on a 512 � 256 grid, Dt = .1, Re = 1,000 and S = 1,000, Bz = 0. This data shows that the kinetic
energy is very accurate at earlier times and at time T = 60.0 is converged to within 1.9% with RTOL = 10�2 of the kinetic en-
ergy of the RTOL = 10�4 solve, and that the standard solver (on F-cycle) starts to loose accuracy at late times.



Fig. 11. Convergence in time for kinetic energy with a guide field of Bz = 5: high viscosity (left) and low viscosity (right).
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Fig. 14. Weak scaling of GEM reconnection problem on Cray XT-5.
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4.5. Scaling results

We have shown that our methods are fast (solves with a few work units per time step) and scalable (asymptotically con-
stant work per cell); in this section we show that these methods can also scale well in practice on a typical contemporary
supercomputer – the ‘‘Jaguarpf” Cray XT-5 at ORNL. Fig. 14 shows the run times of our test problem as a function of the num-
ber of processor cores used. The number of cells is kept constant at either 128 � 128 grid per core or 256 � 256 grid per core.
These are true weak-scaling in that the base case is run on only 8 cores, which is one node of the Cray XT-5, the minimal
compute unit on this architecture. We see that the V-cycle is scaling almost perfectly and that the F-cycle is scaling well
up to 32,768 cores, especially with the larger grid case.

5. Conclusion

We have developed a fully implicit nonlinear multigrid method for 2D resistive MHD and investigated the efficiency on
the GEM reconnection problem with two different Reynolds numbers and with two magnetic guide fields. We have used a
stable method for a low-order upwinding discretization as the smoother for a geometric multigrid solver for a second-order
discretization via defect correction. We have demonstrated that a benchmark problem in magnetic reconnection can be
solved with near textbook multigrid efficiency (e.g., about 18 work units per time step), even with the strong guild field that
is needed for MHD simulation of magnetically confined fusion plasmas.

Our multigrid algorithm developed in this paper is matrix-free, i.e., there is no need to linearize and explicitly store a ma-
trix, which is advantageous on advanced computer architectures where memory access is increasingly dominating the com-
putational cost. The only data that need be stored are the primary data vectors of the algorithm (i.e., residuals, corrections,
and solutions on all grids). Thus, this algorithm is well suited to utilize future computer architectures efficiently. Future work
includes the development of stable high-order smoothers for high Reynolds number plasmas with techniques such as dis-
tributive Gauss–Seidel, multi-stage Jacobi, or KAPPA methods [25], and higher-order accurate time-integration solutions
via defect correction.
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